INFLUENCE OF HIP STRENGTH AND RANGE OF MOTION ON LANDING KINEMATICS ACROSS MATURATION GROUPS IN YOUTH ATHLETES

ANDREA L. BAELLO, EMMA F. ZUK, MICHELLE C. BOLING, LINDSAY J. DI STEFANO, KATE R. PFILE, YUM NGUYEN

*HIGH POINT UNIVERSITY, DEPARTMENT OF ATHLETIC TRAINING, HIGH POINT, NC
1UNIVERSITY OF NORTH FLORIDA, DEPARTMENT OF CLINICAL & APPLIED MOVEMENT SCIENCES, JACKSONVILLE, FL
2UNIVERSITY OF CONNECTICUT, DEPARTMENT OF KINESIOLOGY, STORRS, CT
3COLLEGE OF CHARLESTON, DEPARTMENT OF HEALTH & HUMAN PERFORMANCE, CHARLESTON, SC

INTRODUCTION

- ACL injuries are increasing in the youth population and appears to coincide with physical maturation.¹
- Changes in landing patterns through maturation are suggested to contribute to increased risk of knee injuries in youth athletes.
- Factors contributing to altered landing kinematics throughout maturation are unknown.
- Hip range of motion (ROM) and strength are known to influence landing kinematics.
- It is unknown if these factors contribute to maturational changes in landing kinematics.

PURPOSE

To determine if hip strength and ROM are associated with lower extremity kinematics during a jump landing (JL) task, across-stages of maturation.

METHODS

ASSESSMENT OF HIP STRENGTH

- Isometric strength of the hip extensors (EXT), external rotators (ER), and abductors (ABD), were evaluated by testers with known reliability (ICC>0.80), using a hand-held dynamometer and stabilization straps. (Figures 5-7)

ASSESSMENT OF HIP ROM

- Hip internal rotation (IR) and external rotation (ER) ROM were measured with a digital inclinometer by testers who established an acceptable level of reliability (ICC>0.85), a priori. (Figures 2-4)

PARTICIPANTS

- One hundred and four (41 male, 63 female) youth athletes (13.4±3.1 yrs, 159.0±16.2 cm, 52.1±17.0 kg) volunteered to participate.

ASSESSMENT OF PUBERTAL MATURATION

- The validated modified Pubertal Maturation Observational Scale (PMOS) was used to determine stage of maturation.²
- Participants were dichotomized into 3 maturational categories: pre-pubertal, pubertal, post-pubertal. (Figure 1)

RESULTS

- No significant predictors

- Hip ROM
 - ER ROM: r=0.27, P<0.05
 - IR ROM: r=0.32, P<0.05
 - ABD+EXT ROM: r=0.31, P<0.05
 - KIR: r=0.30, P<0.05

- Hip strength
 - ER: r=0.32, P<0.05
 - IR: r=0.13, P<0.05

- Double-Leg Jump Landing Task
 - A three dimensional motion analysis system (Flock of Birds, Ascension Technologies; Burlington, VT) interfaced with Motion Monitor software (Innovative Sports Training; Chicago, IL), was used to assess hip and knee kinematics on the dominant limb during three JL trials.
 - The JL task required participants to jump from a 30-cm high box set 50% of their height away from a force plate platform and rebound for maximum vertical height upon landing. (Figure 8)

DATA REDUCTION AND ANALYSIS

- Peak isometric hip strength was normalized to body weight (%BW), while ROM was recorded to the nearest degree.
- Frontal and transverse plane hip and knee joint angles at initial contact (IC) (GRF>10N), peak joint angles (IC to peak knee flexion), and joint excursions (peak minus IC) during the deceleration phase of the JL tasks were used for analysis.
- Separate step-wise, multiple linear regressions determine the extent to which hip strength and ROM predicted hip and knee kinematics during the JL task.

SUMMARY AND CONCLUSIONS

- In pre-pubertal athletes, hip strength had more of an influence on landing kinematics, while hip ROM had more of an influence in the post-pubertal athlete.
- These findings suggest that intervention/prevention programs should focus on hip strengthening prior to puberty and incorporate ROM exercises as youth athletes mature.
- Future studies should examine the longitudinal relationship between hip function and landing biomechanics, and the effectiveness of interventions that are specific to pubertal stage.

REFERENCES